A baszk származású Fermat 1601. augusztus 17-én született a Toulouse-hoz közeli Beaumont de Lomagne-ban. Jogi tanulmányait követően előbb Bordeaux-ban élt, majd a toulouse-i parlament tanácsosa lett, állását élete végéig megtartotta. Hat nyelven (a francia mellett görögül, latinul, okszitánul, spanyolul és olaszul) beszélt és verselt, de igazi szenvedélye a matematika volt, amellyel autodidaktaként foglalkozott. Ideje is volt rá, mert nem akart senki iránt elköteleződni, így nem szívesen járt társaságba, barátaival és a kor nagy tudósaival levelekben érintkezett.
1629-ben a Kr. e. 3. században élt Apollóniosz egy művét rekonstruálva rájött, hogy a locusok (adott tulajdonságú pontokból álló halmazok) kezelése könnyebb koordinátarendszer segítségével. Felismerése csak halála után látott napvilágot, így az analitikus geometria megszületését René Descartes nevéhez kapcsolják. A nyugati gondolkodás atyjával mellesleg még életében vitába keveredett, amikor annak a fénytörésről írt munkáját „sötétben botorkálásnak” minősítette. Az utókor Fermat érveit igazolta, így nevét viseli a Fermat-elv, amely szerint a fény többféle közegben a legrövidebb utat követi.
Fermat kedvenc területe a számelmélet volt; a matematikai elemzés (szélsőérték-feladatok) egyik előkészítőjeként tartják számon, Isaac Newton „Fermat úr érintőrajzoló módszere” alapján dolgozta ki a differenciálszámítást. Eredményeivel jóval megelőzte kortársait, akik körében nem csak ezért nem örvendett osztatlan népszerűségnek. Az akkoriban a tudományos folyóiratokat pótló levelezésében csak következtetéseit írta meg, a megoldáshoz vezető utat megtartotta magának (tegyük hozzá: a titkolózás akkoriban általánosnak számított a matematikusok körében), nemegyszer őrületbe kergetve „hivatásos” kollégáit. Descartes például „hetvenkedőnek” nevezte, a brit John Wallis pedig csak úgy emlegette, hogy „az az átkozott francia”.
Az úgynevezett kis Fermat-tétel, amelyet 1636-ban fogalmazott meg és 1640-ben ismertetett egyik levelében, a maradékok (egész számok közti kongruenciák) elméletére vonatkozik és kulcsszerepe van az RSA titkosítási eljárásban. A hiányzó bizonyítást elsőként Gottfried Wilhelm Leibniz adta meg, ezt azóta többen és többféle módon megtették.
Ennél jóval keményebb diónak bizonyult a híres nagy Fermat-tétel, amely matematikusok nemzedékeit kergette az őrület szélére.
Fermat Diophantosz Aritmetika című művében, az egyik oldal szélére, egy mondatban jegyezte fel sejtését, és még azt is odaírta mellé: „Igazán csodálatos bizonyítást találtam erre a tételre, de a margó túlságosan keskeny, semhogy ideírhatnám.”
Egyes vélemények szerint a széljegyzet valódi értelme az volt, hogy a megoldás végtelen hosszú, azért nem fér el, de ha Fermat tréfának szánta, az balul sült el: komolyan vették, és az idők során a matematika Szent Grálja lett. Voltak, akik egész életüket a bizonyításnak szentelték, és még olyan is akadt, aki e tétel miatt követett el öngyilkosságot. A német Paul Wolfskehl életét viszont éppen hogy megmentette: az ifjú szerelmi bánatában éjfélkor akart öngyilkosságot elkövetni, és amíg az óra ütésére várt, a Fermat-sejtésről kezdett olvasni. Mire feleszmélt, már másnap volt, életkedve is visszatért, így évtizedekkel később bekövetkezett halála előtt végrendeletében komoly összeget tűzött ki a megoldónak.
A tételt a negyedik hatvány esetében már maga Fermat, a harmadikra pedig a 18. században Leonhard Euler bebizonyította. A teljes megoldás azonban évszázadokig váratott magára, csak részeredmények születtek.
Wilest szárnyára kapta a világhír, bulvárlapok interjúvolták, dokumentumfilm készült róla, megkapta a Wolf-díjat, az Abel-díjat és a Fields-érmet. A Fermat-tétel a populáris kultúra része lett, utaltak rá a Star Trek sorozatban és a Simpson családban, a könyvsiker Millennium-trilógia női főszereplője szabadidejében a bizonyításon töri a fejét.
Fermat 1665. január 12-én halt meg. Nevét viseli kráter a Holdon, kisbolygó és kétévente kiosztott tudományos díj. Születésének 400. évfordulóján szülőházának udvarán szobrot állítottak fel, amely a magyar matematikus Szilassi Lajos által megalkotott poliédert ábrázolja – a Szilassi-poliéder a tetraéder mellett az egyetlen olyan ismert poliéder, amelyre teljesül, hogy bármely két lapjának van közös éle.